Teaching Philosophy Statement
Wendy Morrison

This is the first time I have had to articulate my teaching philosophy. I have been aware for years that there are different teaching styles, and have been unconsciously judging them through the years, but I have never pondered extensively what this means to me. Through this process, I have determined that my philosophy boils down to three general principles. The first is demonstrating passion for the subject. I am guessing that this is somewhat cliché, and for that I apologize, but for me it characterizes the key ingredient I feel is necessary to catch and keep the interest of students in this age of high-tech gadgets and short attention spans. When I enjoy the subject and enjoy teaching, it makes learning fun, and my students pick up on the passion. In order to excite my students about the subject, I must also know how to express those feelings and excite them in the students. For me, ecology is definitely my passion. Because ecology looks at interactions within a community, all aspects of ecology are connected and all can have profound influences on our world. It is not hard for me to find relevant examples and become enthusiastic about teaching. If you were to ask ten people to suggest one word that describes me, I am guessing that at least half would say “enthusiastic”. While this is not necessarily a bad word, given a choice, I would choose “smart” or “charismatic” over “enthusiastic” any day. However, I actually feel that enthusiastic describes me accurately. I have been blessed by finding my passion in ecology, and am not ashamed to show it.

The second principle of my teaching philosophy is hands-on learning. Through ponderings about my teaching philosophy, I thought back to my undergraduate marine biology class more than fifteen years ago. Even though I cannot remember a single fact from my marine biology lectures, I can remember at least 2 of the experiments we completed during the lab portion of the class. I remember examining with fascination the different layers of a mud core collected from the bottom of the bay. We were allowed to look, feel and smell the sample as we determined the different layers. The second experiment I remember manipulated the magnetic field around fiddler crabs to determine if this impacted their behavior. I remember this lab because the fiddler crabs did not behave as expected, an especially valuable lesson for biology experiments! Through this thought process I realized that to really remember something (I think fifteen years counts), you have to experience it.

My first introduction to problem based learning was in 1997-1998, when I was hired as a high school science teacher for a project in South Miami called the “partnership in academic community” (PAC). The project identified students with at least two characteristics that correlate with dropping out of school at an early age. These students were then bussed to Florida International University where they engaged in hands-on learning in math, science and computers before joining their regular school for the afternoon classes. During the PAC classes, I could only implement hands-on learning (i.e. no lectures or book learning) but I was free to choose my own curriculum. For a beginning teacher, it was quite challenging, but I learned a lot. The biggest challenge for me was seeing an idea work well for my PAC kids, who had learned how to work in groups, but fail miserably with my students who had only ever been exposed to lectures and book learning (my non-PAC classes were 50-100 percent larger as well which also impacted my ability to monitor the groups). I could see first hand how the PAC students were not only becoming experts at working together as a group, but also doing a better job of mastering key scientific concepts.

The first two classes I was a T.A. for at Georgia Tech were Introductory Biology and Ecology Labs. Both classes involved leading students through “recipe” labs like I had completed as an undergraduate 15 years earlier. While I enjoyed both of these classes immensely, I have gotten much more out of the last two classes I have taught. In the fall of 2006 I taught Ecology Project Lab with Dr. Julia Kubicz to ten wonderful senior biology students. We started the class with two “recipe” labs developed by me and Dr. Kubicek to give the students an introduction to ecology experiments. The rest of the semester was devoted to supporting the students as they developed and implemented their own ideas and experiments. It was great to see the students set out on their own. Some immediately found their groove and others floundered around before finally finding ecological questions of interest. The process was invaluable to the students as they got to experience what it really means to be a biologist: the thought process, the trial and error and the endless starting over. It was rewarding for all of us involved, and I guarantee the students will remember the process and what they learned for at least the next fifteen years.
I am currently teaching Honors Ecology as a problem based learning course. So far this is the most challenging course I have taught. It is difficult to determine the correct amount of guidance, which allows my students to learn on their own but not get frustrated or waste too much time being completely off track. We are only on the fourth week of class, but I have already seen the light bulbs above their heads when they realize there is no “correct answer” and that the processes of exploring ecological concepts, processing the information, and designing experiments to test ideas is more important than the end product.

The final principle of my teaching philosophy is modeling and teaching proper behavior and respect. Some young people today have an attitude of entitlement that will not help them succeed in the real world. I believe that my job as a teacher is not just to impart knowledge about a given subject, but to also help my students grow into hard-working and respectful members of society. A student’s intelligence and understanding of the subject are both important, but to be successful, they also need to know how to work with others and follow general rules of respect. A good classroom is one in which my students are comfortable discussing ecology and asking questions. Therefore, I strictly enforce respectful behavior from the students not only toward myself but also toward each other and follow the concept of “no question is a stupid question”. I would way rather have someone ask a simplistic question than to have that student be confused or even worse have a roomful of silent students staring at each other and me!

In summary, engaged students in my classes must work hard, ask questions, learn to think, respect others, and have fun! Feedback from students suggests that I have succeeded in implementing these principles and have successfully taught students ecological principles that will be useful for the rest of their lives.